RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2014

THIRD YEAR

CHEMISTRY (Honours)

Date : 05/05/2014 Time : 11 am – 1 pm

Paper : VIII

Full Marks : 50

[Use a separate Answer book for each group]

Group - C

<u>Unit – I</u>

[Answer <u>any one</u> question]

- 1. a) Justify the following observations (any three):
 - i) Atomic size of Ba \rightarrow Eu \rightarrow Yb decreases linearly while that of other 4f-block elements decreases irregularly.
 - ii) Magnetic moments calculated for $\text{Gd}^{3+}(4f^7)$ using μ_J , μ_{L+S} and μ_{spin} give the same value.
 - iii) Tendency of M-M bond formation increases from V to Ta.
 - iv) When MoBr₂ is dissolved in HCl, different anionic species are obtained.
 - b) Classify the following as closo, nido or arachno : (any two)
 - $Ge_{9}^{4-}, Bi_{5}^{3+}, [Ni_{5}(CO)_{12}]^{2-}$
 - c) Give a brief outline of the ion exchange method of separation of the lanthanide ions. [3]
 - d) Derive the valence shell electronic configuration of a Ln^{3+} ion (Given : Ground State Term : ${}^{3}H_{4}$) [2]
- 2. a) Arrange the following sets of ions with increasing hydrolytic tendency with justification : [2×2]
 i) Pu⁴⁺, Pu³⁺, Pu²⁺
 - ii) $Ac^{3+}, U^{3+}, Pu^{3+}, Cm^{3+}$
 - b) Discuss the structure and molecular orbital bonding pattern of $\operatorname{Re}_2\operatorname{Cl}_8^{2-}$. [2+4]
 - c) Write a short note on the use of lanthanide complexes as NMR-shift reagent. [3]

<u>Unit – II</u>

[Answer <u>any one</u> question]

a)	Depict the methods for nanomaterial syntheses. Outline a method for the synthesis of si	ze-
	controlled nanoparticles.	[3+3]
b)	What are the differences between primary and secondary explosives?	[3]
c)	Mention the forces working in supra molecules.	[3]
a)	Write short notes on the following (any three):	[3×3]
	(i) Carbon nanotubes, (ii) detonation velocity, (iii) molecular switches, (iv) inverse crown ethers.	
b)	What do you mean by RDX as an explosive?	[1]
c)	What do you mean by overoxidised and underoxidised explosives. Explain with proper examples	. [2]
	 b) c) a) b) 	/ I 5

<u>Group - D</u>

<u>Unit – I</u>

[Answer <u>any one</u> question]

5. a) A solution of 0.05(M) KMnO₄ has been used for titration at pH = 10. What is the normality of the KMnO₄ solution. Justify your answer. [2]

[3×2]

[2×1]

[2×1]

- b) Determine the concentration of Mg(II) and Ca(II) ions in solution in gm/lit from the given titre values. [4]
 - i) When 20ml of Mg)II) and Ca(II) mixture was titrated with Na_2H_2EDTA at pH = 10 using NH_4Cl/NH_4OH buffer and EBT as indicator, 18.5ml of Na_2H_2EDTA solution was consumed.
 - ii) When 20ml of the same Mg(II) and Ca(II) mixture was titrated with Na_2H_2EDTA at pH = 12 in strongly alkaline medium (using NaOH) and patton-Reeder's indicator, 12ml of Na_2H_2EDTA solution was consumed.

Strength of Na₂H₂EDTA solution was 0.0112(M).

(Given atomic wt. of Ca = 40.08 and atomic wt. of Mg = 24.31)

c) What are 'co-precipitation' and 'post-precipitation'? Distinguish between co-precipitation and post-precipitation. [2+2]

[3]

[3]

[1]

[2]

[2]

[2+2]

- d) Give outlines of the analytical procedure for estimation of the following (<u>any one</u>):
 - i) Fe in Portland Cement
 - ii) MnO₂ in Pyrolusite
- 6. a) Calculate the potential of the solution in the titration of 100ml of 0.1(M) Fe²⁺ in 0.5(M) H₂SO₄ with 100ml of 0.02(M) MnO₄⁻. [2]
 - b) What is argentometry? Discuss the mechanism of adsorption indicator. [1+2]
 - c) Metal ion-indicator's action is pH sensitive. Explain with an example.
 - d) Outline the optimum conditions for the precipitation that will give pure and filterable precipitate. [2]
 - e) What do you mean by gravimetric factor?
 - f) Among the reagents : (i) Na₂CO₃, (ii) K₂S₂O₈ and (iii) Na₂O₂ which one will you use for fusing a sample of Fe₂O₃ and why?

<u>Unit – II</u>

[Answer <u>any one</u> question]

- 7. a) Elucidate the following with examples.
 - i) determinate error
 - ii) indeterminate error
 - iii) absolute and relative errors in analytical results. [1+1+1]
 - b) Discuss the principle of determination of NO_X in air sample.
 - c) What are the largest and smallest possible R_f values? Discuss the significance. [2]
 - d) Distinguish between precision and accuracy. Replicate water samples are analysed for water hardness with the following results : $102 \cdot 2$, $102 \cdot 8$, $103 \cdot 1$ and $102 \cdot 3$ ppm of CaCO₃. Calculate the standard deviation. [$1 \cdot 5 \times 2$]
 - e) State the principle of estimation of NH_4^+ in soil sample.

8.	a)	Discuss 'Winkler test' for the determination of DO of water sample indicating the interferences.	[3]
	b)	How will you detect and estimate arsenic in a water sample.	[3]
	c)	Discuss the principle of demineralization of water using ion exchange method.	[2]

- d) What are
 - i) 'Ascending' and 'Descending' chromatography?
 - ii) Stationary and Mobile phases in paper chromatography?

Give examples in each case.

80參Q